翻訳と辞書 |
Freedman's paradox : ウィキペディア英語版 | Freedman's paradox In statistical analysis, Freedman's paradox,〔Freedman, D. A. (1983) "A note on screening regression equations." ''The American Statistician'', 37, 152–155.〕 named after David Freedman, describes a problem in model selection whereby predictor variables with no explanatory power can appear artificially important. Freedman demonstrated (through simulation and asymptotic calculation) that this is a common occurrence when the number of variables is similar to the number of data points. Recently, new information-theoretic estimators have been developed in an attempt to reduce this problem,〔Lukacs, P. M., Burnham, K. P. & Anderson, D. R. (2010) "Model selection bias and Freedman's paradox." ''Annals of the Institute of Statistical Mathematics'', 62(1), 117–125 〕 in addition to the accompanying issue of model selection bias,〔Burnham, K. P., & Anderson, D. R. (2002). ''Model Selection and Multimodel Inference: A Practical-Theoretic Approach,'' 2nd ed. Springer-Verlag.〕 whereby estimators of predictor variables that have a weak relationship with the response variable are biased. == References == 〔
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Freedman's paradox」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|